
Starting Six

The probability of a seed flowering is 0.36 How many seeds would we expect to flower from a pack of 400 seeds?

45 people were asked if they had a cat or dog. 19 people have a dog. 5 people had neither. What is the probability they only have a cat?

The probability of winning on a game of coconut shy is $\frac{3}{7}$

Fred plays the game twice.

a) Work out the probability of her winning exactly one game.

Beth plays two tennis matches, the probability of a win is 0.8

- a) Work out the probability of losing both
- b) Work out the probability of winning at least one game.

A and B are two sets of traffic lights.

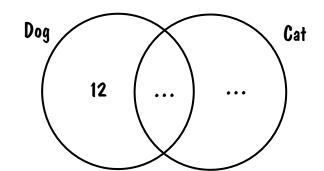
The probability of stopping at light A is 0.3

If stopped by light A, the probability of not stopping at lights B is 0.6

If not stopped by lights A, the probability of not stopping at lights B is 0.7

a) Draw a suitable tree diagram

John spins a biased coin twice. The probability that it will land on tails both times is 0.25


a) Calculate the probability that it will land on heads both times.

Starting Six

The probability of a seed flowering is 0.36 How many seeds would we expect to flower from a pack of 400 seeds?

45 people were asked if they had a cat or dog. 19 people have a dog. 5 people had neither. What is the probability they only have a cat?

The probability of winning on a game of coconut shy is $\frac{3}{7}$

Fred plays the game twice.

a) Work out the probability of her winning exactly one game.

Beth plays two tennis matches, the probability of a win is 0.8

- a) Work out the probability of losing both
- b) Work out the probability of winning at least one game.

A and B are two sets of traffic lights.

The probability of stopping at light A is 0.3

If stopped by light A, the probability of not stopping at lights B is 0.6

If not stopped by lights A, the probability of not stopping at lights B is 0.7

a) Draw a suitable tree diagram

John spins a biased coin twice. The probability that it will land on tails both times is 0.25

a) Calculate the probability that it will land on heads both times.