${ }^{9}$ Starting Six

What is the coordinate for the turning point of $y=x^{2}+8 x+12$

Solve these simultaneous equations:

$$
\begin{gathered}
6 x+2 y=5 \\
3 x+5 y=-5.5
\end{gathered}
$$

Simplify:

$$
\frac{3 x+5}{3}+\frac{2 x-7}{4}
$$

Prove that $(3 n+1)^{2}-(3 n-1)^{2}$ is a multiple of 4 for all positive integer values of n.

Make x the subject of the formula:

$$
\mathrm{w}=\frac{3 k-x p}{5 x-m}
$$

$$
f(x)=2 x^{2}-5 \text { and } g(x)=\frac{1}{x-9}
$$

Find: $g f(6)$

Find: $f^{-1}(x)$

Starting Six

What is the coordinate for the turning point of $y=x^{2}+8 x+12$

Solve these simultaneous equations:

$$
\begin{gathered}
6 x+2 y=5 \\
3 x+5 y=-5.5
\end{gathered}
$$

Simplify:

$$
\frac{3 x+5}{3}+\frac{2 x-7}{4}
$$

Prove that $(3 n+1)^{2}-(3 n-1)^{2}$ is a multiple of 4 for all positive integer values of n.

Make x the subject of the formula:

$$
\mathrm{w}=\frac{3 k-x p}{5 x-m}
$$

$$
f(x)=2 x^{2}-5 \text { and } g(x)=\frac{1}{x-9}
$$

Find: $g f(6)$

Find: $f^{-1}(x)$

