OPEPAIIONS	Work out: $20-5 \times 3$	Work out: $12+9 \div 3$	Work out: $(4+5) \times 2+3$	Work out: $3+5 \times 2-1$	Work out: $6+2 \times(5-1)$	Add brackets to correct: $9+2 \times 6-3=18$	Add brackets to correct: $9+2 \times 6-3=15$	Add brackets to correct: $2+3 \times 4+5=29$	Add brackets to correct: $2+3 \times 4+5=45$
	The first 5 multiples of: 8	The first 5 multiples of: 12	The LCM of: 12 and 8	The LCM of: 20 and 15	The LCM of: 14 and 5	The LCM of: 21 and 9	The LCM of: 20 and 14	The LCM of: 40 and 56	The LCM of: 50 and 14
	Factors of: 30	Factors of: 48	The HCF of: 24 and 18	The HCF of: 36 and 48	The HCF of: 39 and 130	The HCF of: 30 and 75	The HCF of: $\begin{gathered} 2^{3} \times 3^{3} \times 5^{2} \text { and } \\ 2 \times 3 \times 5^{3} \end{gathered}$	The HCF of: $\begin{gathered} 2^{3} \times 3 \times 5 \text { and } \\ 2^{2} \times 3 \times 5^{2} \end{gathered}$	The HCF of: $\begin{gathered} 2^{2} \times 3^{2} \times 5 \text { and } \\ 2 \times 3^{3} \times 5 \end{gathered}$
	Write as a product of prime factors: 20	Write as a product of prime factors: 50	Write as a product of prime factors: 80	Write as a product of prime factors: 120	Write as a product of prime factors: 150	Write as a product of prime factors: 240	Write as a product of prime factors: 360	Write as a product of prime factors: 128	Write as a product of prime factors: 136
	Write down the upper bound: 3.2 rounded to Idp	Write down the lower bound: 4.3 rounded to $1 d p$	Write down the lower bound: 2.34 rounded to $2 d p$	Write down the upper bound: 435 rounded to 3 sf	Write down the lower bound: 2100 rounded to $2 s f$	Write down the error interval: 2.7 rounded to 1 dp	Write down the error interval: 24 rounded to $2 s f$	Write down the error interval: 1340 rounded to 3sf	Write down the error interval: 1.328 rounded to 3 dp
$N \mid=T \leq S$	How much will $£ 3000$ be worth after 3 years simple interest at 2% per annum.	How much will $£ 2000$ be worth after 4 years simple interest at 2.5% p.a.	How much will $£ 4000$ be worth after 3 years compound interest at 3\% p.a.	How much will $£ 5000$ be worth after 4 years compound interest at 2% p.a.	How much will $£ 600$ be worth after 3 years compound interest at 2.4% p.a	How much will $£ 500$ be worth after 4 years compound interest at 1.6% p.a.	How much will $£ 50$ be worth after 9 years compound interest at 2.1% p.a.	How much will $£ 900$ be worth after 14 years compound interest at 3.1\% p.a.	How much will $£ 5000$ be worth after 25 years compound interest at 0.9% p.a.
DEPRECIAE	How much will a car be worth $£ 4000$ be worth after 3 years with a depreciation rate of 10\%	How much will a car be worth $£ 8000$ be worth after 3 years with a depreciation rate of 20%	How much will a car be worth $£ 6000$ be worth after 3 years with a depreciation rate of 15%	How much will a car be worth $£ 4000$ be worth after 5 years with a depreciation rate of 15%	How much will a car be worth $£ 5000$ be worth after 3 years with a depreciation rate of 9%	How much will a car be worth $£ 9000$ be worth after 2 years with a depreciation rate of 35%	How much will a car be worth $£ 12,000$ be worth after 2 years with a depreciation rate of 7\%	How much will a car be worth $£ 14,000$ be worth after 5 years with a depreciation rate of 13%	How much will a car be worth $£ 24,000$ be worth after 10 years with a depreciation rate of 11%
	Write down all the possible integer values of n $1 \leq n<5$	Write down all the possible integer values of \boldsymbol{n} $-1 \leq n<4$	Write down all the possible integer values of n $-3<n \leq 2$	Write down all the possible integer values of n $-5 \leq n<1$	Write down all the possible integer values of n $-6<n<-1$	Write down all the possible integer values of n $-4<n \leq 4$	Write down all the possible integer values of n $-3 \leq n<2$	Write down all the possible integer values of n $-5<n \leq 2$	Write down all the possible integer values of n $-9 \leq n<-3$
M(T)IAE	In standard form: $340,000$	As an ordinary number: 2.4×10^{3}	In standard form: $40,450$	As an ordinary number: 7.3×10^{5}	In standard form: 0.00045	As an ordinary number: 6.4×10^{-5}	In standard form: 0.003007	As an ordinary number: 3.007×10^{-3}	In standard form: 0.008006
WORKOWT	Work out: $\left(2.4 \times 10^{3}\right)+\left(2.3 \times 10^{2}\right)$ Answer in standard form.	Work out: $\left(4.5 \times 10^{4}\right)+\left(1.3 \times 10^{3}\right)$ Answer in standard form.	Work out: $\left(3.4 \times 10^{5}\right)-\left(1.2 \times 10^{4}\right)$ Answer in standard form.	Work out: $\left(5 \times 10^{5}\right) \times\left(3 \times 10^{4}\right)$ Answer in standard form.	Work out: $\left(3.2 \times 10^{3}\right) \times\left(4 \times 10^{5}\right)$ Answer in standard form.	Work out: $\left(8 \times 10^{5}\right) \div\left(4 \times 10^{2}\right)$ Answer in standard form.	Work out: $\left(3.6 \times 10^{4}\right) \div\left(9 \times 10^{2}\right)$ Answer in standard form.	Work out: $\left(3.2 \times 10^{4}\right) \times\left(5 \times 10^{-2}\right)$ Answer in standard form.	Work out: $\left(4.8 \times 10^{5}\right) \div\left(1.2 \times 10^{-3}\right)$ Answer in standard form.

