Express 135 as a product of prime factors in the form $2^{a} \times 3^{b} \times 5^{c} \times 7^{d}$. What are the values $a, b, c$ and $d$ ?

Here is a pattern made from bricks:

| Pattern 1 | Pattern 2 |
| :---: | :---: | :---: |

a) What is the $n$th term?
b) Which pattern will have 49 bricks?
a) Express the perimeter in terms of $y$ and $z$.
b) If the perimeter is 21 cm . Find the value of $z$ when $y=1$.


Factorise:
b) $\left(18 b^{2}+15 b\right)$

Solve: $14 x-5=6 x-1$
Estimate the area of the following triangle.

8.2 cm

Calculate the area of the shaded section. $M$ is the midpoint of line $A B$.

a) $(3 y+4)^{2}$

## Expand:

the other rings every $\overline{6}$ minutes. When will they both ring at the same time?

Find the value of $a$ and $b$


Express 135 as a product of prime factors in the form $2^{a} \times 3^{b} \times 5^{c} \times 7^{d}$. What are the values $a, b, c$ and $d$ ?

Here is a pattern made from bricks:

| Pattern 1 | Pattern 2 |
| :---: | :---: | :---: |

a) What is the nth term?
b) Which pattern will have 49 bricks?
a) Express the perimeter in terms of $y$ and $z$.
b) If the perimeter is 21 cm . Find the value of $z$ when $y=1$.


Factorise:
b) $\left(18 b^{2}+15 b\right)$

Solve: $14 x-5=6 x-1$
Estimate the area of the following triangle.

8.2 cm

Calculate the area of the shaded section. $M$ is the midpoint of line $A B$.

a) $(3 y+4)^{2}$

## Expand:

the other rings every $\overline{6}$ minutes. When will they both ring at the same time?

Find the value of $a$ and $b$


